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On the basis of the discussion in our previous work (T1) and the reexamination 
of the concept of entropy of a pure quantum state it is shown that a natural 
explanation of the^process of entropy increase exists. A new definition of an 
entropy operator S is given and it is shown that there is not any increase of 
entropy when one confines oneself to the usual formalism of quantum me- 
chanics and uses this definition. Some other attempts of proving the H theorem 
are briefly discussed. 

1. I N T R O D U C T I O N  

The discussion in our previous paper (Todorov, 1980; hereafter re- 
ferred to as T1) showed that the behavior of parts of a larger system is in 
fact irreversible in t ime- -when  the overall system is in a state of definite 
energy all the subsystems will relax to a stationary state too in the process 
of their spatial separation. We do not know at present exactly how such a 
relaxation can be described but the very fact that it is an inherent property 
of quantum systems is interesting enough and indicates a possible applica- 
tion to nonequilibrium statistical mechanics (even prior to the creation of a 
precise theory). We have in mind the problem formulated in the title of the 
present paper. 

The problem of entropy increase consists in the definition of some 
function of time, which is then shown to possess the characteristic proper- 
ties of entropy known from phenomenological thermodynamics. This is a 
very old problem of physics and a huge amount of work has been 
accomplished in the said field from the time of Bolzmann to the present 
day. In spite of this a rigorous solution has not been found. It became clear 
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in the course of the work that quantities which increase irreversibly with 
time can be obtained in many different ways. A common feature of all the 
methods is the use of some assumption which seems quite natural, e.g., the 
existence of molecular chaos, the possibility to examine coarse-grained 
distributions, the introduction of terms breaking the symmetry of the 
Liouville equation with respect to time reversal, or the postulate of correla- 
tion weakening in classical and quantum statistical mechanics. As long as 
no rigorous proofs of these hypotheses exist the problem remains on the 
addenda. 

In this work we shall add a unity to the number of approaches to the 
said problem. We shall essentially use in our approach the postulate of 
equilibrium statistical mechanics which says that the thermodynamics of a 
given system can be obtained from the properties of its microcanonical 
ensemble (the canonical and grand canonical ensembles are proved to be 
equivalent to the microcanonical ensemble in this respect; see, e.g., 
Zubarev, 1971). 

We shall show first that one can ascribe definite thermodynamical 
quantities to the stationary states of the Hamiltonian of many-body 
systems without coming into contradiction with the well-known results of 
equilibrium statistical mechanics. Irreversibility will then immediately fol- 
low (for a typical nonstationary process) from the results of T1 and the 
first law of thermodynamics. We shall examine only the quantum case here 
owing to the basing of our argumentation on the discussion in T 1. 

2. ON THE EQUIVALENCE OF THE MICROCANONICAL 
ENSEMBLE TO A STATIONARY QUANTUM STATE 

It is well known from phenomenological thermodynamics that definite 
values of quantities such as the entropy S, temperature T, and so on can be 
ascribed to stationary many-body systems having energy E and closed in a 
fixed volume V. It is logical to ask the question: Why should not one think 
that the stationary quantum states of such systems are the exact realization 
of the idea of thermodynamical stationary states? (The essential difference 
between a quantum stationary state and a classical state of fixed energy E 
will be discussed briefly later on.) Such a thought seems forbidden by the 
conventional concept which states that the entropy of pure quantum states 
is always equal to zero. It is interesting therefore to see how this concept 
has appeared in quantum statistics and what kind of an entropy is really 
equal to zero in an ensemble of systems in a fixed pure state. 

It seems to us that the source of the said opinion can be found in the 
well-known book of von Neumann (1932). We shall try first to interpret 
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the expression for the entropy of an ensemble of quantum systems ob- 
tained there. 

Consider an ensemble consisting of M identical copies of an N-particle 
quantum system, M being a large positive integer and the particles being 
indiscernible, and let Pi be the probability of finding a fixed system in a 
stationary state ~Pi of energy E i. Then M,.=p~M will be the number of the 
systems in our ensemble which are in a state ~Pi. 

The expression for the entropy S M of this ensemble obtained in von 
Neumann's book (1932) is 

S u  = - M k  s ~ p i l n p i  (2.1) 
i 

where k n is Bolzmann's constant. 
From equation (2.1) it follows that we can 

average entropy to any system in our ensemble: 
ascribe the following 

S = - k B ~ pilnpi (2.2) 
i 

There will not be a deep physical sense in such an average entropy in 
the general case, so that equation (2.2) defines merely some kind of an 
information entropy of the ensemble. But in the case of a microcanonical 
ensemble which is basic for statistical mechanics the situation is quite 
different. 

Indeed, as is well known,  the microcanonical ensemble consists of 
systems of energy Ei, i=  1,2 . . . . .  W, E < E i < E + A E ,  where AE/E<<I, all 
the probabilities Pi being equal [pi = l / W ,  i= 1,2 . . . . .  IV, W being the 
number of independent stationary states of energies inside (E, E + A E)]. 

In the general case, obviously, the adding of a new copy of our 
N-particle system to the ensemble will lead to a variation of S M which is 
different from the expression (2) (since pi-~Pk) for "average entropy" S. In 
the case of a microcanonical ensemble, however, a similar step will lead to 
a variation of SM which is almost equal to S when M-,oo,  M~ =PiM-,oo,  
W>> 1 (the latter condition is always fulfilled when N is a large integer). 
This is true irrespective of the quantum state ~k of the new system [as long 
as it belongs to ( E , E + A E ) ]  and it can be immediately verified by 
examining the initial entropy Su [see equation (2.1)] and the final entropy 
SM+~ = - ( M +  1)kBY.~p~lnp~, where Pi = M ~ / M ~ M k / M  (because of the 
fact that M=/= oo we can have only an approximate equality pi ~Pk in the 
general case of arbitrary M, M>> 1, the approximation growing better with 
the increase of M), p~ = M ~ / ( M +  1) (ivek),  P'k =(M~ + 1 ) / ( M +  1). 
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Indeed, 

E?,In?,+O(1)] (2.3) 

where the term 0(1) can be neglected owing to the inequality W>>I 
[ - Y'~Pi lnpi~ - lnp = - in( 1 / W)>> 1 when W>> 1 ]. 

The microcanonical ensemble is a basic postulate of statistical me- 
chanics. This means that the thermodynamical functions have to be 
calculated using the microcanonical distribution. We are interested in the 
entropy of an N-particle system with energy varying inside the interval 
(E, E+AE) .  It is given by the expression (2.2) for S s i n c e  this is the 
average entropy of a system in the microcanonical ensemble (cf. also our 
subsequent discussion). Our consideration above shows that (2.2) can be 
interpreted as the thermodynamical entropy of any pure state ~b~ inside the 
interval (E, E+AE) .  This fact will be used below in the discussion of the 
entropy increase with time. Let us stress here that the said fact is a logical 
consequence of the (inexplicit) physical idea which leads to the postulating 
of the microcanonical dis t r ibut ion-- the equal probabilities are an expres- 
sion of the concept that practically all the different states ~b~ inside 
(E, E + A E )  are equivalent f rom the point of view of thermodynamics. 
Therefore, the above property of the microcanonical distribution is in 
exact agreement with the already mentioned way of action in phenomeno- 
logical thermodynamics in which an entropy S = S(E, V) is ascribed to any 
macroscopical system having an energy equal to E and closed in a volume 
V, S being a continuous function of E and V. 

There exists a seeming contradiction between the fact that we ascribe 
a thermodynamical entropy S=~0 to" a fixed microstate and equation (2.1), 
giving S M = 0 for an ensemble of systems in a fixed state +i. But what kind 
of an entropy is SM? The expression (2.1) for the entropy S M of the 
microcanonical ensemble is postulated to have a bearing on thermody- 
namics owing to its physical meaning. This does not mean, however, that 
any kind of information entropy has a thermodynamical sense. The latter 
fact is well known (cf., e.g., the discussion in the work of Tisza and Quay, 
1963). Still, it is worthwhile to examine the said fact from the point of view 
of the aims of the present paper. Such a discussion is made even more 
necessary by the fact that yon Neumann's  view on the entropy of a pure 
quantum state continues to be very popular among physicists. 

Let us see first how von Neumann tries to find a physical argument in 
favor of the concept that S ~ =  0 for a fixed pure state r He shows in 
Chapter V of his cited book (von Neumann, 1932) that any quantum state 
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~i can be transformed into any other state q~ if a series of some kind of 
measurements is effected. (purely abstract; no concrete prescription is 
offered). In the case of E iv~E k the energy difference E i - E g  can be taken 
from a purely mechanical process, no thermal energies being exchanged, so 
the final entropy should be the same for all tp; according to von Neumann 
and it can be normalized to zero. 

Leaving aside the problem for the actual possibility of the said 
measurements we nevertheless have to say that the above statement is 
simply wrong in the general case since when we have, e.g., a system with a 
fixed volume the important moment  in the discussion of entropy variation 
is the very fact of the variation of the internal energy of the said system 
and not what has caused it. For  instance, when a missile passes through 
some gas the latter will be heated owing to the transformation of purely 
mechanical (kinetic) energy into energy of the thermal motion and the 
entropy of the gas will increase. But let us turn to the formal deduction of 
equation (2.1) in Chapter V of yon Neumann (1932). 

Consider an ensemble of M systems which are identical in any respect 
with the exception of the quantum state which can be different for the 
different members of the ensemble. Let the corresponding probabilities be 
p,, Y.ipi = 1. We assume that any system of the ensemble is closed in a very 
heavy box with adiabatical (isolating) walls, the mass of the boxes being 
much larger than the mass of the gas which they contain and all the 
characteristics of the boxes being the same. All these boxes are held in 
another box K_ the volume V and the temperature T are such that the 
classical gas formed by our M boxes can be treated as an ideal gas with 
thermodynamical parameters 11, T. That part of our ideal gas which 
contains the Mi=piM systems in a stationary state tpi can be separated 
from the rest with the help of a wall penetrable for all states q~k, kv~i, and 
impenetrable for ~g, the final volume of the i gas being equal to the volume 
V of K. The same can be done with all k gases, no thermal energies being 
involved in these processes, so we shall have in the end ideal classical gases 
containing M 1 =plM_ M2-~p2M .... molecules, each of which is closed in 
the same volume V. The corres_ponding volumes are then compressed 
isothermally to V 1 =pl ~, ~2=P2V,... in which process the entropy of the 
total system increases with ksE~M~p~lnpr In the end, all states ~p~ are 
reduced to the same state tp with the help of the said hypothetical series of 
quantum measurements. No variation of entropy exists in the latter process 
according to von Neumann.  Because of the fact that the entropy of the ~b 
gas is assumed to be equal to zero and having in mind the said total 
increase of entropy after the compression we see that the entropy of the 
ensemble of systems characterized with the set of' probabilities (Pi) has to 
be given by equation (2.1). 
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Thus it seems that the assertation Sr 0 is really necessary for the 
proof of equation (2.1). We shall show that this is not so. Indeed, the above 
procedure is almost identical to the one in which the entropy S m of mixing 
of ideal gases at the same temperature T is obtained [see, e.g., example No. 
5 in Chapter 2 of Kubo's book (1968)]. The value S m precisely coincides 
with the expression (2.1) for S M, Mi=p~M being again the number of 
molecules of the ith ideal gas and M the total number of the molecules. 
The only difference between the two procedures is that in the second case 
we start from volumes V,.=py inside which are our ideal gases at the same 
T and pressure P, then open them, so that the gases can mix in the total 
volume V and afterwards the same procedure of adiabatical separation of 
the gases and isothermal compression back to V~ is effected and the same 
result (2.1) is obtained. Consequently, we can do absolutely the same in the 
case when the i th ideal gas consists of boxes containing quantum systems 
in stationary states ~i and come to the result (2.1) without the assumption 
Sr Thus the total entropy (2.1) of a quantum ensemble is in fact the 
mixing entropy of ideal classical i gases. 

One may ask the following natural question here: If the assertion 
S,~ = 0 about the thermodynamical entropy is nonphysical then why do the 
two methods give the same result for SM? 

The answer is simple. The reduction of all states @i to ff is a superflu- 
ous step in yon Neumann's procedure and this unnecessary step is neutral- 
ized by the nonphysical declaration that Sr = 0. Indeed, the aim of both 
procedures examined above is the reversible annihilation of an unknown 
amount of mixing entropy with an equal amount (but of the opposite sign) 
of thermodynamical entropy which will b e  known in the end of the 
process. In the first procedure this is accomplished by the moment in 
which all the i gases are compressed isothermally to V~=py. The fact that 
these gases still possess a property (the quantum state ~;) which makes 
them discernible from the point of view of thermodynamics has no more 
any significance: We have accomplished the necessary reversible separa- 
tion which gives the exact value of the mixing entropy, the entropy 
connected with the 'thermal motion of the boxes being the same as in the 
initial moment (it is not affected by the existence of impenetrable walls if 
the total volume and the pressure are the same) and no mixing entropy 
exists any longer. So it is not necessary to try to get rid of a property 
(discernibility) which no longer plays any role in the problem--the second 
procedure is a clear illustration of this fact). 

The physical sense of the first procedure (without the superfluous 
step) is transparent. When M--~oo, N--~oo, N/V=const, the property of 
discernibility of the different ~i becomes "fine grained" enough to make 
the introduction of a thermodynamical meaning in the mixing entropy of 
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ideal gases possible. The corresponding procedure is well known and is 
described, e.g., in Chapter V of the cited book of von Neumarm. Namely, 
one has to find the extremum of S M under the additional conditions 
Y, iPi=l, (E~=cons t ,  where (E> is the fixed average energy of the 
N-body system. After a corresponding variation one obtains 

Pi =e-#e,/ ~ e-l~ek (2.4) 
k = l  

where fl is the "modulus" of the thermostat. Interpreting fl as 1/kBT we 
obtain the information entropy S of the canonical ensemble by replacingp i 
in equation (2.2) with the expression (2.4) in which fl has the above value. 
This entropy is identified with the thermodynamical entropy of our system 
since it is maximum in a state of equilibrium with the thermostat, the 
equilibrium values of Pi being given by equation (2.4) and, besides, it 
possesses all the typical properties of entropy [e.g., S = - a F / O T ,  the 
Helmholz function F being calculated using (2.4) too and so on]. This 
entropy will coincide also with that of the microcanonical ensembles when 
N-,oo owing to the already mentioned equivalence of the statistical 
ensembles in this case. In such a way we obtain the chain of equalities 
S= S( N, V, T)= S( ( E ) , N, V) where S( N, V, T) is the entropy calculated 
with the help of the canonical ensemble and S((E),  N, V)--the entropy 
of the microcanonical one for E =  ( E ) .  

In the general case the entropy S [equation (2.2)] does not have any 
thermodynamical meaning, and in the extreme case of an ensemble of 
systems in the same stationary state q~i, SM gives "zero information" about 
the thermodynamical properties of q~i (let us remind the reader once again 
that only several statistical ensembles have a bearing on thermodynamics). 
In such a way the seeming contradiction is solved and the expressions (2.1) 
and (2.2) have obtained an interpretation acceptable from the point of 
view of physics: SM [equation (2.1)] gives sensible information about the 
thermodynamical entropy of a many-body system only in a few cases of 
statistical ensembles. In the case when all the members of the ensemble are 
in a fixed state qJi, SM gives no information whatsoever about thermody- 
namical entropy. This fact has certainly no relevance to the actual thermo- 
dynamical properties of a pure stationary state. 

We can ascribe now definite thermodynamical properties, e.g., en- 
tropy S~,, to any stationary state q~i without being afraid that a contradic- 
tory situation may appear. Really, the above considerations mean that 
~ i  = I~E, iV. V (I~E, N, V is a brief notation of the fact that our N-particle system 
is closed in a volume V and is in a state of definite energy E) is an 
eigenfunction not only of the Hamiltonian H but of the entropy operator 
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S ( H )  too corresponding to an eigenvalue S(E, N, V). This value, as the 
postulate says, can be obtained, at least in principle, from equation (2.2) in 
the ease of a microcanonical ensemble. The entropy operator can be 
defined in a well-known way which is described for the general case in von 
Neumann (1932), Chapter II: 

S ( H ) - -  f f~S( )~ ,N ,V)dE(h)  (2.5) 

where /~(~) is the projection operator on the subspace formed by the 
eigenfunctions of H corresponding to energies E < ~. This operator, obvi- 
ously, is defined in such a way that it gives the entropy S~E 'N'v of a state of 
energy E and, at the same time, the entropy S of the microcanonical 
ensemble constructed over states ~Pi of energy E i ~ ( E, E + A E): 

S~ . . . . .  ~(tPE, N, vISItPE, N, V~ 

E+A 

Y~ P,(q'E,,~,vISI~Pe,,N,v> (2.6/ 
Ei~E 

(The entropy S is a continuous function of E according to phenomenologi- 
cal thermodynamics and the microcanonical ensemble is postulated to 
ensure this property.) 

One can define analogically the temperature operator 7~: 

oo 0S 
(2.7) 

having a definite value [OS(E, N, V)/OE]- 1 in any state ~ke, N,v and so on. 
In such a way we can construct a complete set of operators which are 
applicable not only to the usual statistical ensembles but to all eigenfunc- 
tions of H as well, thus making a physically reasonable equivalence of 
statistical ensembles and the said functions possible. 

The ease with which we came to the conclusion about such an 
equivalence is due to the discreteness (which leads to enumerability) of the 
stationary quantum states and the very concept of such a state. This fact 
made the above procedure of reversible separation of gases possible since 
they thus possess a clear-cut property, making them distinguishable. The 
proof of a similar t heo rem- - the  (quasi)ergodic hypothes is- - for  classical 
states of many-body systems has not been carried out yet for the general 
case owing to the complications arising from the classical concept of a 
state of motion: We have in this case an innumerable sequence of states of 
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constant E defined by the positions of a representative point in the 
6N-dimensional phase space of the system. This is an essentially time- 
dependent situation and one is forced to seek a troublesome proof of the 
equivalence of ensemble- and time averaging. The concept of a quantum 
stationary state is quite different. It is much more akin to the concept of a 
classical microcanonical ensemble than to a classical state of motion since 
it does not depend essentially on time (~e(q, t)=tPE(q)exp[-iEt/h], so 
that a striking similarity between quantum and thermodyuamical sta- 
tionary states exists. Combined with the above said enumerability of states, 
this fact quickly leads to a physically clear result. 

3. ON T H E  INCREASE OF  ENTROPY W ITH  TIME 

Equation (2.5) gives a general definition of the entropy operator S and 
it can be applied to nonstationary states as well like any other operator in 
quantum mechanics. We can show now that the usual prescriptions of 
quantum mechanics cannot make possible a prevalent increase of the 
entropy (2.5) with time. Indeed, let us examine the following typical 
irreversible process. An N-particle system is in a stationary state ~be,~,v, 
and in moment t = 0 its volume is increased suddenly (in a sense discussed 
in T1) to V 2 > Vp The well-known conventional prescription gives 

,, - ~i/n)e.ta, (3.1) Z aE..,,, v:  ,'E..,,.v2 
n 

where ae. ' N, v= are constants, Y~, I ae,, u, v2 ] 2 = 1. Consequently, 

<S(t )>t>o = f q:(tLqq (t) dq-- lag., 
n 

N.v212S(En, N, I:2) = (S(0)> 

(3.2) 

q denoting all the degrees of freedom of the system. The average value 
(S( t ) )  thus remains constant with time. It is obvious that this inference 
remains unaltered even when one takes a microcanonical ensemble of 
states t p i ~ ( E , E + A E  ) and performs the same act of an instantaneous 
increase of all identical volumes in moment  t = 0 since the entropies of the 
different ~i are practically equal and no one state changes its entropy 
according to (3.2). Therefore, no tendency of irreversibility can exist in the 
Schrrdinger equation which is symmetrical to time reversal. 

In order to make this fact even more vivid we shall examine a 
one-dimensional potential well of length a with impenetrable walls: U(x) 
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= 0 for 0 < x  < a, U(x) = oo for x < 0, x/> a. One dimensionality is chosen 
for the sake of simplicity, everything remaining true for a rectangular 
three-dimensional potential well with a removable wall. Let our well 
contain N noninteracting identical particles of mass rn in some overall 
stationary state ~p~. The possible energies of the stationary states of the 
individual particles are equal t o  E(n)-=rt2,'ir2h2/2ma2, n = l , 2  . . . . .  The 
length of the well is increased instantaneously from a to b in some moment 
t=0 .  Equation (3.1) in which E,  are in our case the eigenenergies of the 
N-body system of "free" particles in the well of length b gives immediately 
that the initial form of the wave function ~(t)t~o will be exactly restored in 
moments of time t k =4kmb/~rh, k= 1,2 . . . .  (it is sufficient, obviously, to 
examine the behavior of a single particle in the said well since the initial 
state of the N-body system is a linear combination of products of individ- 
ual eigenfunctions and any one individual state has the above property). In 
such a way the particles will collect periodically in the initial interval of 
length a, the finite period being T= 4mb/~rh, according to the Schr6dinger 
equation (for a subsystem of a larger system). We do not have thus an 
irreversible expansion in the above process in the conventional way of 
action. Clearly, the same remains true when one examines the above 
process applied to a microcanonical ensemble of eigenstates of the many- 
body system. 

The discussion in T1 makes it possible to obtain an increase of S with 
time in a straightforward way. Indeed, consider a system of interacting 
particles in a volume V l which is large enough (or the density being large 
enough) to make the influence of the walls on the motion of practically all 
the particles negligible (with the exception of a small number of particles 
in the vicinity of the walls). The volume V~ is then suddenly increased to 
V 2. When the overall system is in a state of (practically) definite energy, 
the subsystem consisting of our N pzrticles will relax to a state of definite 
energy Ej too (cf. T1). Owing to the fact that only a vanishingly small part 
of the particles will "feel" the motion of the wall one is justified to expect 
that Ey will be practically equal to the initial energy E i of the N-body 
system: E t~E i. The increase of S in this process follows immediately from 
our previous discussion and the first law of thermodynamics. Really, the 
variation AS of S in this process is equal to 

v2a  
AS= fv~ -~S(E,  N, V) dV>O (3.3) 

since OS/OV>O owing to the said law 

d e  = T d S -  e d V  (3.4) 
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Really, when dE= 0 we shall have 

P ~IjS(E, N, V ) =  y > 0  (3.5) 

since the pressure P is always positive (the microcanonical ensemble is 
postulated to guarantee this property). The integration in (3.3) is lawful 
because, according to our discussion, any eigenstate of energy E of our N 
particles in a volume V has a definite entropy S(E, N, V) and one has to 
calculate S(EI~Ei, N, 112) starting from s(gi, N, Vl). This is certainly done 
with the help of the integration in (3.3). Consequently, despite.the fact that 
the general evolution equation is yet unknown, its very existence makes it 
possible to obtain a numerical expression for the total increase AS of 
entropy in a typical nonstationary process. A more detailed information 
about the evolution can be obtained only if the exact equation is solved. 

The same argumentation does away with the paradoxical periodical 
behavior of the system of free particles in the potential well. Indeed, this 
system will come irreversibly to a stationary state too and no behavior of 
such a sort is implied in a stationary state. 

Up to this moment we had in mind N-body systems consisting of 
identical particles owing to the simplicity of the case. But everything said 
remains true for arbitrary many-body systems despite the fact that things 
do not seem so obvious then. We shall show that this is really so in the 
general case, clarifying in the way the physical sense of our definition (2.5) 
of entropy. 

Consider, e.g., a system consisting of two types of interacting particles 
which are initially separated and let the separating wall disappear in 
moment t=0 .  According to the discussion in T1 the system will quickly 
relax to a state of (practically) definite energy E~, the characteristic time of 
this process being determined by the relation AEAt~h. (Having in mind 
the possible dependence of lan(t)t on t, considered in T1, one can easily 
see that we shall have first a relaxation to some group of almost degen- 
erated levels, the state of strictly definite En being reached only in the limit 
t--->oo). Owing to the thermodynamical equivalence of the stationary states 
~p~ inside (E, E+AE), which is true in the general case, it is enough to 
come to a situation in which practically all members of the wave packet 
correspond to eigenenergies E,E(E, E+2tE), 2u~/E<<l. We can assert 
then that the entropy S has reached its value defined in equation (2.6). In 
this point the following problem appears: The above time-energy "un- 
certainty relation" gives a very fast relaxation of the initial state to a linear 
combination of the said group of ~p~. We come thus to a definite S much 
earlier than the moment by which the ordinary diffusion of the different 
gases is essentially completed. But the process of diffusion is irreversible 
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while we state that our entropy has reached its normal value prior to the 
end of this process. 

The contradiction, however, is only apparent. An additional consider- 
ation of our S does away with it. 

According to our discussion the purely stationary quantum states ~k; 
with E i ~(E,  E+AE),  AE/E<<I, N-->oo, are equivalent from the point of 
view of thermodynamics, so we can ascribe to them the same functions S, 
T, and so on. On the other hand, these q~i may have essentially nonequi- 
librium inherent properties as implied by the interpretation of I q~il 2 as the 
coordinate probability density. Indeed, gigantic coordinate fluctuations 
from the most probable distribution can exist in a stationary ~i (e.g., a 
practically complete separation of the different components of the initially 
uniform mixture of gases) since frail2=/=0 in such cases also. In the 
conventional variant of quantum mechanics we do not know how to 
describe the evolution of such a fluctuation in a strictly stationary state if,. 
since ff~ is written in a static notation (+ i (x )exp[ - iE i t /h  ). 

Allowing for the possibility of fluctuations (even gigantic ones) S has 
to be in fact an expression of some prevalent "average stability" only of q#. 
This property will be practically identical for all ff~ ~ (E, E + A E). After the 
said fast initial reduction of ~p to a wave packet Y~a~(t)q~i where practically 
all ~piE(E, E+AE)  and Y, ilail 2= 1 we come to a linear combination of 
physically indistinguishable states [(~i [ g [ ~i ~ ~ (~Pk 15~[ ~b k ~ ; Ei, E k E (E, E 
+ AE)] which has to describe a situation, as empirical facts show, in which 
the process of diffusion has not yet practically begun. Owing  to the 
physical indistinguishability of the said ~i we can now treat the above wave 
packet as a gigantic coordinate fluctuation in some stationary state. The 
gradual disappearing of all ai(t ) with the exception of a fixed an(t ) (we 
know that we have to come to a definite stationary state ~k, when t--->oo) 
will cause the disappearing of the fluctuation in the process of its evolu- 
tion. Consequently, we have obtained the possibility of considering in- 
timate inner properties of the stationary states ~i due to the above 
definition and interpretation of entropy of a pure state. 

The reader has probably noticed the complete parallelism between our 
interpretation of the wave packets of thermodynamically (practically) 
indistinguishable states and the interpretation of "usual" wave packets 
composed of eigenstates ~ corresponding to a quasiclassical motion. In 
the latter case a fixed ~k~(q) does not give a dynamical picture of the 
motion of the particle as well but  a linear combinat ion of 
~p~(q)exp[- iE~t/h] with slightly varying values of the set of parameters a 
can provide (for a certain period of time) a picture corresponding to our 
classical concepts of motion. One can certainly ascribe this picture to 
practically any one of the stationary states of which the packet is corn- 
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posed. In an analogical way we interpret the thermodynamical wave 
packet as a dynamical picture of the internal properties of a stationary 
state. In both cases the wave packets will be comparatively slowly reduced 
to fixed eigenstates according to the general discussion in T1. 

Consequently, the irreversible master equation will describe two dif- 
ferent things: 

(1) It will give information about the interval of time during which 
the system of interest will pass from a highly unstable initial state to a state 

which can be interpreted as a gigantic fluctuation of a stationary 
~Pn E(E, E+AE). Because of this we can say that we have come to a 
definite property S which characterizes an overwhelming tendency of such 
a ~kn. In our specific example this will be a tendency to the most probable 
coordinate distribution of the system in a state of motion ~b.; this tendency 
is a direct consequence of the internal physical properties which uniquely 
determine all the thermodynamical properties of the manybody system. 
<~ ISl~) is a "measure" of this tendency. It does not depend on t ime--a  
purely ergodic property. 

(2) The master equation will then give the actual realization of the 
said tendency by describing the gradual disappearing of the gigantic 
fluctuation in the process of mixing of the gases; this can be characterized 
by some relevant information entropy if necessary. 

The above inference is general. The specific case examined is only an 
illustration of a typical way of reasoning. 

The assertion that S is a continuous function of E (for fixed N and V) 
is not true only for points in which phase transitions take place. This is 
inessential since the considerations apply to intervals (E, E+AE) which 
do not contain the transition points. 

We pointed out in the beginning that any approach to h-reversibility 
based on the time-reversible conventional equations is inevitably con- 
nected with the postulation of hypotheses which do not follow from the 
basic theory. We shall illustrate this briefly with a few examples. 

The first attempt for a proof of the H theorem in the orthodox variant 
of quantum mechanics without molecular chaos-type assumptions, as it is 
declared, belongs to yon Neumann (1929). However, his theory of macro- 
scopic measurements and the introduction of a "virtual" microcanonical 
ensemble U~ based on this theory, the entropy S(U,~) of which corresponds 
to the entropy S(~) of a single state, is in fact an assumption of exactly 
such a type [S(tk) is also based on the theory of macroscopic measure- 
ments and has no bearing to S t in our previous discussion]. Indeed, this 
manipulation is analogical to the usual introduction of coarse-grained 
distributions. Another assumption shows that von Neumann examines in 
fact a model of a rather contradictory character. Namely, it is presumed 
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that the procedure of macroscopic measurement of energy is so rough that 
only large groups of levels are discernible and, at the same time, so fine 
that it is possible to determine the exact boundary between any pair of 
such large groups. And lastly, von Neumann himself states in his introduc- 
tion that owing to symmetry of the SE with respect to time reversal one 
cannot prove the H theorem in the ordinary form S(q) >>. S(t2) for t 1 >/t 2. 
This statement is quite convincingly supported by the fact that von 
Neumann uses a wrong sign before the time derivative OqJ/Ot (he works in 
fact with the equation -ih(Oq~/Ot)=Htp but this is inessential for his 
approach). What von Neumann shows in his model is that the time 
average of S(U%)-S(~t) has to be a small quantity if a number of quite 
strong additional assumptions are made (one of which is the nondegener- 
acy of the eigenstates of the many-body system). One cannot thus think 
seriously that the problem has been solved in this work or, at least, that it 
has obtained a clear formulation. 

Two recent definitions of quantities which have the property to 
increase with time and are postulated to be the entropies of the corre- 
sponding systems can be found in the works of Zubarev (1971) and 
Prigogine et al. (1973). It is shown in Appendix III of the former work that 
a time-irreversible conduct can be obtained with the help of the introduc- 
tion of an infinitesimal "source" into the Liouville equation for the 
quantum statistical operator p: 

0pg 1 H]  - ef(p ) (3.6) 
o - T  + = 

where f(p~) is a function of pc(t). The source -ef(p~) breaks the symmetry 
with respect to time reversal and lim~__,+0p~(t ) is supposed to be the correct 
statistical operator. In the work of Prigogine et al. a similar step exists. It 
consists of a contour integration in the upper half-plane. This is the first 
step in a series of manipulations which lead to a quantity increasing with 
time. 

It is hard to say that the above two approaches have a transparent 
physical meaning (leaving aside the problem of mathematical rigor). Our 
previous discussion shows that the ordinary mechanism of quantum theory 
cannot guarantee an increase of entropy if one starts from the definition 
(2.5) of the entropy operator. Quite probably, the system of axioms of the 
conventional theory is essentially broken in the above methods. It is worth 
pointing out in this context the similarity between the introduction of 
sources into the Liouville equation and the introduction of a term I'~k in 
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the Schr6dinger equation in T1, both operations ensuring time irreversibil- 
ity. The fact that the introduction of infinitesimal terms in the Schr6dinger 
equation is by no means an innocent action when very large time intervals 
are considered can be seen in the detailed discussion in our forthcoming 
paper (Todorov, to be published; hereafter referred to as T4). 

4. CONCLUSION 

The present work does not claim to have solved the difficulties in 
statistical mechanics. The approach to the problem of entropy increase 
outlined above may encounter serious impediments in a future theory 
(which we hope to exist) from the point of view of a rigorous practicable 
realization. But we believe that our considerations provide a sound basis 
for the formulation and consideration in principle of some problems in 
statistical physics. 

Our attention was concentrated chiefly on the physical aspects of the 
problem since it can turn out that the hope of an actual mathematical rigor 
in the N-body problem is illusory. One is forced to make a number of 
assumptions based on physical intuition even in works which are declared 
to be mathematically rigorous. 

According to the ideology of our paper T1 developed further in the 
present work the (thermodynamical) properties of a system of particles are 
determined solely by the inherent physical nature of the said system. 
Measurements and other extraneous effects are not supposed to play an 
essential role (certainly, as long as no noticeable exchange of energy 
between our system and extraneous systems exists). This is in marked 
contrast to generally accepted notions--compare, e.g., with the ideology of 
yon Neumann (1929, 1932). Our work T4 contains a further development 
of the said concept. 

In the paper of Ta-You Wu (1975) it is shown that one has to go 
beyond classical mechanics in order to prove Bolzmann's H theorem. In 
this work we show further that one has to go beyond conventional 
quantum mechanics for an honest treatment of irreversibility. More ex- 
actly, the postulate (I) in T1, which is basic for orthodox theory, has to be 
abandoned in the general case. 
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